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ABSTRACT

The trade-off inherent in constant learning rate stochastic gradient descent (SGD) has been well-
documented empirically: larger learning rates often yield faster convergence, but risk the possibility
of exploding. However, the relevant question of an appropriate choice of learning rate has rarely re-
ceived systematic treatment; one often chooses learning schedules based on domain knowledge and
preliminary numerical experiments without theoretical guidance. This question is intimately related
to the concept of “edge of stability”, which refers to a regime where the chain neither converges
nor explodes. Despite rich literature on deterministic gradient descent, the rigorous characteriza-
tion of “edge of stability” for the more ubiquitous SGD chains, remains an open question. In this
paper, we formalize the notion of the stability region, and develop theoretical guarantees for esti-
mating the stability region for SGD for a wide class of strongly convex objectives. We introduce a
stochastic version of Lyapunov exponent for SGD, which yields a practical, data-driven threshold
for admissible learning rates. Moreover, all of our theoretical results are backed by extensive exper-
iments. Collectively, these findings demonstrate a practically implementable as well as theoretically
valid way of choosing learning rate parameters in various problems, while also paving the way to
potential generalization to more complicated nonconvex landscapes.

1 INTRODUCTION

The dynamics of stochastic gradient descent (SGD) and related optimization methods have been studied extensively
from the perspective of stability, generalization, and convergence. Foundational analyses such as Hardt et al. (2016)
established stability guarantees for SGD and connected them to generalization, while subsequent works have inves-
tigated SGD as an approximate Bayesian inference procedure (Mandt et al., 2017) and as a stochastic process with
heavy-tailed gradient noise (Simsekli et al., 2019). More recently, SGD has also been analyzed as a random dy-
namical system with almost sure convergence properties (Daneshmand et al., 2024) and from a nonlinear time series
perspective (Li et al., 2025). However, a consistent theme with the majority of these literature is the lack of principled
guidelines on how to choose the (small enough) step-size that ensures the stability of the system. On the other hand,
choosing a learning rate that is too small leads to excruciatingly slow convergence. Edge of stability analysis reflects
the sweet spot between stability and convergence.

However, until recently, the edge of stability literature has largely focused on deterministic gradient descent (GD).
Conventional theoretical analyses typically focus on the inverted problem of the stability threshold—namely, conver-
gence guarantees at the sharpness threshold (i.e., the maximum eigenvalue of the Hessian) that guarantees stability for
a GD algorithm with a given step size. The practically relevant problem of determining a problem and data-dependent
threshold of learning rate that ensures stability, is much less explored. Moreover, often stochastic gradient descent is
used over vanilla GD in an online setting, and much less is known about the edge-of-stability threshold for the SGD
algorithms. In this article, we bridge this gap between theory and practice by proposing a theoretically valid, as well
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as practically implementable data-driven estimate of edge-of-stability for SGD algorithms in strongly convex setting.
Our main contributions are as follows.

1.1 MAIN CONTRIBUTIONS

Maximal expansion parameter As a stepping stone to the notion of edge-of-stability, we analyze the geometric mo-
ment contraction of the SGD dynamics and define the maximal expansion parameter Lℓpγq as the maximal Lipschitz
parameter for ℓ-step SGD dynamics given ℓ P N` and step size γ ą 0. This parameter can be understood as the value
of the weakest possible contraction of the SGD functional with step-size γ. Leveraging tools from time-series theory,
we provide asymptotic theory for estimating Lℓpγq uniformly over γ;

Theorem 1.1 (Theorem 3.1, informal). Under standard regularity conditions, it follows that supγPΓ |L̂ℓpγq´Lℓpγq| “

OPp
logn
?
n

q, where Γ is a compact set.

Towards the development of this result, we also borrow insights from high-dimensional statistics literature to provide a
sharp uniform moment bound on the partial sums of i.i.d. random functions. We expect this result to be of independent
interest.

Conceptual development and estimation of edge-of-stability for SGD. Developing on the concept of maximal
expansion parameter, we rigorously characterize the edge-of-stability, denoted by γℓ, in terms of the smallest learning
rate that pushes the l-step maximal expansion parameter beyond 1, thereby making the chain explode. Our definition
leads to a natural estimation strategy for this edge-of-stability threshold, denoted by γ̂ℓ,n. Theory for the estimator
γ̂n To the best of our knowledge, this work is the first one to provide finite-sample error bounds on the convergence
property of γℓ,n; in particular, we prove the following theorem.

Theorem 1.2 (Theorem 4.3, informal). Under standard regularity conditions, it follows that |γ̂ℓ,n ´ γℓ| “ OPp
logn
?
n

q.

Here we present two examples on linear regression and expectile regression respectively. The detailed settings are
deferred to Remark 2.2 and Section 5. In particular, the exact forms of the learning-rate boundary can be provided
in the linear regression model, which are γ “ 2{3 and γ “ 10{3 for the random samples generated from standard
normal distribution and standard uniform distribution, respectively, with p “ 2 and d “ 1. As shown in Figure 1, by
our proposed methodology, we can very accurately hit the boundary that we derived theoretically (denoted by vertical
dashed lines in Figure 1(a)).

(a) Linear regression. (b) Expectile regression.

Figure 1: Examples for edge of stability. Green: N p0, 1q; Yellow: Unifr0, 1s. All the experiments are repeated 30
times. The detailed setting is provided in Section 5.

Connections with Lyapunov theory. Our framework admits a natural interpretation in terms of Lyapunov theory
once we adopt an asymptotic point of view on edge-of-stability. Indeed, by letting ℓ Ñ 8 in the definition of the
maximal expansion parameter, submultiplicativity and Fekete’s lemma ensure that the limit:

λppγq :“ lim
ℓÑ8

1

ℓ
logLp

ℓ pγq
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exists. This quantity is precisely the maximal Lyapunov exponent associated with the stochastic dynamics of SGD at
learning rate γ: it measures the exponential rate at which moment distances between trajectories grow (if positive) or
decay (if negative). In particular,

λppγq ă 0 ñ exponential contraction of p-th moments,
λppγq ą 0 ñ exponential expansion of p-th moments.

Accordingly, the oracle edge of stability can be equivalently characterized as the zero-crossing of this exponent:

γ8ppq :“ inftγ P Γ | λppγq ě 0u.

This viewpoint places our notion of edge-of-stability squarely within the classical Lyapunov framework: SGD dynam-
ics remain stable as long as the maximal Lyapunov exponent is negative, and instability begins exactly at the point
where it reaches zero. The construction aligns with classical work on Lyapunov exponents for products of random
matrices and random dynamical systems, beginning with Oseledets’ multiplicative ergodic theorem (Oseledets, 1968)
and subsequent developments in the monographs of Bougerol and Lacroix Bougerol & Lacroix (1985) and Arnold
Arnold (1998). In those settings, the sign of the maximal Lyapunov exponent governs long-run stability of the system.
Our moment-based definition λppγq can be interpreted as an analogue tailored to stochastic approximation schemes
such as SGD, and places the edge-of-stability phenomenon within the same analytical framework.

Notation. In this paper, we denote the set t1, . . . , nu by rns. The d-dimensional Euclidean space is Rd. For a vector
a P Rd, |a| denotes its Euclidean norm. For a matrix M P Rdˆm, |A| denotes its Euclidean operator norm. For a
random vector X P Rd, we denote }X} :“

a

Er|X|2s. We also denote in-probability convergence, and stochastic
boundedness by oP and OP respectively. We write an À bn if an ď Cbn for some constant C ą 0, and an — bn
if C1bn ď an ď C2bn for some constants C1, C2 ą 0. Often we denote an À bn by an “ Opbnq. Additionally,
if an{bn Ñ 0, we write an “ opbnq. For a compact convex set Γ Ă Rd, we denote by intpΓq :“ tx P Γ : Dε ą

0 such that Bεpxq Ă Γu, where Bεpxq :“ ty : |x ´ y| ă εu is the ε-ball around x P Rd. In particular, we denote the
closed unit ball in Rd by B :“ B1p0q.

2 EDGE OF STABILITY: PRELIMINARIES

For a function G : Rd ÞÑ R, consider the following optimization problem:

θ˚ “ argmin
θPD

Gpθq, D Ă Rd is compact and convex,

and let ξi
i.i.d.
„ P be the innovations. Subsequently, all the probability statements are carried out on the same measure

space as P . Define F P C1. With an online stream of ξ1, ξ2, . . . , the classical SGD algorithm estimates θ˚ via the
recursion

θi “ F γ
ξi

pθi´1q, with F γ
ξi

pθq “ θ ´ γ∇gpθ, ξiq, i “ 1, 2, . . . , (1)

where g is a measurable function, and gp¨, xq P C2 satisfies Er∇gpθ, ξqs “ ∇Gpθq. Here γ ą 0 is the constant learning
rate. Before proceeding further, we introduce two key assumptions that are ubiquitous in SGD literature, as well as
heavily used throughout our article.
Assumption 2.1 (µ-strong convexity). There exists a µ ą 0 such that g is µ-strongly convex; in other words, for all
θ, θ1 P Rd,

@

m pθq ´ m
`

θ1
˘

, θ ´ θ1
D

ě µ|θ ´ θ1|2,
where mpθq :“ Er∇gpθ, ξqs, ξ „ P .

Strong convexity is a textbook assumption in the stochastic approximation literature (Ruppert, 1988; Polyak & Ju-
ditsky, 1992; Bottou et al., 2018a). It guarantees uniqueness of the minimizer and provides a quadratic lower bound
that underlies contraction arguments. This assumption is standard in convex SGD theory, and is satisfied by canonical
problems such as linear or regularized logistic regression. While it does not extend to general nonconvex objectives, it
is well aligned with our focus on strongly convex settings.
Assumption 2.2 (Stochastic Lipschitz continuity). Let p ě 1. There exists some constant Np ą 0 such that, for all
θ, θ1 P Rd,

∥∇g pθ, ξq ´ ∇g
`

θ1, ξ
˘

∥p ď Np|θ ´ θ1|.
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Strong convexity guarantees uniqueness of the minimizer and provides a quadratic lower bound on the objective. This
ensures that the SGD iterates are attracted toward a single point rather than drifting among multiple optima, and it
underlies the contraction arguments that follow. On the other hand, stochastic Lipschitz-ness controls the variability
of the stochastic gradients across different parameter values. This assumption enables us to bound deviations of the
stochastic gradients uniformly, which is essential when passing from local to global statements in a concentration
analysis. We remark that Assumptions 2.1 and 2.2 are standard features of statistical analysis of convex stochastic
optimization, and have appeared extensively in Ruppert (1988); Polyak & Juditsky (1992); Bottou et al. (2018b); Chen
et al. (2020); Zhu et al. (2023); Wei et al. (2023); Li et al. (2024).

2.1 MAXIMAL EXPANSION PARAMETER: INTRODUCTION

As discussed in §1, the learning rate γ ą 0 plays a fundamental role in the performance of SGD; a larger value of γ
may lead to θi being divergent. However, one can preclude the possibility of explosion by theoretically analyzing the
maximum possible contraction after a given number of iterates from the current instance. We formalize this insight by
borrowing the notion of contractive maps in dynamic systems defined by Wu (2005);
Definition 2.1 (MEP-ℓ). The p-th Maximal Expansion Parameter of lag 1 (MEP-1) is defined as

Lppγq :“ sup
θ‰θ1

E
”
∣∣∣F γ

ξi
pθq ´ F γ

ξi
pθ1q

∣∣∣pı
|θ ´ θ1|p

. (2)

Generalizing (2), for ℓ P N`, the ℓ-lag maximal expansion (MEP-ℓ) can be defined as:

Lℓ
ppγq :“ sup

θ‰θ1PD

E
”

|F γ
ξi`ℓ´1:ξi

pθq ´ F γ
ξi`ℓ´1:ξi

pθ1q|
p
ı

|θ ´ θ1|p
,

where the composite map F γ
pa`bq:ap¨q :“ F γ

a`b ˝ . . . ˝ F γ
a`1 ˝ F γ

a p¨q.

The quantity Lppγq can be interpreted as the maximal possible value of the Lipschitz constant in equation (17) of Li
et al. (2025); as we will discuss in §4, this interpretation readily leads to a notion of edge-of-stability through the need
to ensure geometric moment contraction. However, before proceeding further, we take a pause here to make a crucial
observation regarding the tractability of the maximal expansion parameter.

The maximal expansion parameter, as is defined, concerns computing a supremum over pairs of distinct points θ, θ1.
This form may appear cumbersome for both analysis, as well as any direct approach to estimation. However, in
Lemma 2.2, we transform the corresponding sample version into a tractable quantity through equivalent characteriza-
tion through ∇θF

γ
ξi

pθq for all ξi and θ.

Lemma 2.2. Let D Ă Rd be compact convex set and γ ą 0 be given. Suppose F γ
ξi

pθq be as in Equation (1). Then,
under Assumption 2.2 it follows that:

sup
θ‰θ1PD

1

n

n
ÿ

i“1

∣∣∣F γ
ξi

pθq ´ F γ
ξi

pθ1q

∣∣∣p
|θ ´ θ1|p

“ sup
θPD

sup
u:|u|“1

1

n

n
ÿ

i“1

ˇ

ˇ∇θF
γ
ξi

pθqu
ˇ

ˇ

p
. (3)

Additionally, it follows that

sup
θ‰θ1PD

E
”∣∣∣F γ

ξi
pθq ´ F γ

ξi
pθ1q

∣∣∣pı
|θ ´ θ1|p

“ sup
θPD

sup
uPRd:|u|“1

E
”
∣∣∣∇θF

γ
ξi

pθqu
∣∣∣pı .

Remark 2.1. Virtually the same arguments as Lemma 2.2 allow us to write

sup
θPD

sup
uPRd:|u|“1

1

n

n
ÿ

i“1

”
∣∣∣∇θF

γ
ξi

pθqu
∣∣∣pı “ sup

θPD
lim
δÑ0

sup
v:|v|“1

1

n

n
ÿ

i“1

|F γ
ξi

pθq ´ F γ
ξi

pθ ` δvq|p

|δ|p
. (4)

Equation (4) is especially useful in situations where the computation of ∇θF
γ
ξi

pθq is intractable. It allows us perform
numerical differentiation by considering a fine-grained mesh around θ in different directions.
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Remark 2.2 (Range of γ in linear regression). Consider the linear regression model

Yi “ XT
i θ ` ϵi,

where θ P Rd is the population parameter vector of interest and ϵi P R are i.i.d. random noise independent of tXiuiě1.
In this setting, the Assumption 2.1 and Assumption 2.2 holds with µ “ λmintEpXiX

J
i qu and N2 “ supδPRd:|δ|“1 :

∥XiX
J
i δ∥22, where λmint¨u refers to the smallest eigenvalue. Consequently, Theorem 2.2 in Li et al. (2025) ensures

Lppγq ă 1 as long as

0 ă γ ă
2λmintEpXiX

T
i qu

supδPRd:|δ|“1 : ∥XiXT
i δ∥22

.

It can be demonstrated that this range reaches the optimum in general. By this expression, for d “ 1, the boundary
of γ is 2{3 « 0.67 when Xi follows the standard normal distribution N p0, 1q and is 10{3 « 3.3 when Xi follows the
standard uniform distribution U r0, 1s.

Lemma 2.2 allows us to consider a supremum over a single parameter, boosting tractability by eliminating dependence
on arbitrary pairs. In lieu of Lemma 2.2, one can approach estimating Lppγq (and in general Lℓ

ppγqq by way of the
corresponding empirical versions:

pLn
p pγq :“ sup

θPD
sup

u:|u|“1

1

n

n
ÿ

i“1

∣∣∣∇θF
γ
ξi

pθqu
∣∣∣p ,

and in general

pLℓ,n
p pγq :“ sup

θ‰θ1PD

1
n

řn
i“1 |F γ

ξi`ℓ´1:ξi
pθq ´ F γ

ξi`ℓ´1:ξi
pθ1q|

p

|θ ´ θ1|p
, ℓ P N. (5)

Following from Lemma 2.2, we would also like to introduce a similar notion for Lℓ
ppγq and its sample version pLℓ,n

p pγq:

Lℓ
ppγq “ sup

θPD
sup

u:|u|“1

E
“
∣∣∇θpFpi`ℓ´1q:ipθqqu

∣∣p‰ “ sup
θPD

sup
u:|u|“1

E

«∣∣∣∣∣
˜

ℓ
ź

k“1

∇θF
γ
ξi`ℓ´k

pθl´kq

¸

u

∣∣∣∣∣
pff

pLℓ,n
p pγq “ sup

θPD
sup

u:|u|“1

1

n

n
ÿ

i“1

∣∣∇θpFpi`ℓ´1q:ipθqqu
∣∣p “ sup

θPD
sup

u:|u|“1

1

n

n
ÿ

i“1

∣∣∣∣∣
˜

ℓ
ź

k“1

∇θF
γ
ξi`ℓ´k

pθl´kq

¸

u

∣∣∣∣∣
p

where θp0q “ θ and for k ą 0, θpkq “ F γ
ξi`k´1

pθpk´1qq.

Subsequently, we primarily focus on Lppγq and its estimator L̂n
p pγq. A naive treatment of the general ℓ-case can be

understood to be quite similar; however, we mention another interesting property of the function MEP-ℓ that renders the
general case practically trivial after one has considered the ℓ “ 1 scenario. In particular, it follows that the sequence
tLℓ

ppγquℓPN`
is submultiplicative.

Proposition 1. Set p ě 1 and γ P Γ, and let k, ℓ P N. Then:

Lℓ`k
p pγq ď Lk

ppγq ¨ Lℓ
ppγq.

Armed with these additional insights, in the next section we develop an asymptotic theory for L̂n
p pγq.

3 THEORETICAL RESULTS ON MAXIMAL EXPANSION PARAMETERS

Before stating our main results, we collect a set of regularity assumptions that ensure both well-posedness of the
optimization problem and tractability of the analysis. Some of these are standard in the study of SGD, but we briefly
comment on their roles.
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Assumption 3.1 (Compact and convex domains). The parameters θ and γ are confined to compact convex domains
D Ă Rd and Γ “ ra, bs, for b ą a ą 0.

Compactness of the parameter and learning-rate domains is not intrinsic to SGD, but serves as a standard technical
device in empirical process theory. It guarantees well-posedness when taking suprema over continuous index sets
and facilitates the use of covering arguments and δ-nets. Although unconstrained optimization problems such as
linear regression are typically posed on Rd, in practice SGD iterates remain bounded due to regularization, explicit
projection, or simply because divergence leads to algorithmic instability (see, e.g., projection-based variants of SGD
in Nemirovski et al. (2009), Lan (2012)). Finally, the assumption that a^ b ą 0 excludes the trivial case Lℓ,n

p pγq “ 1,
where the SGD chain does not move at all.
Assumption 3.2 (Lipschitz property). We assume that there exists a constant Kp ă 8 such that the operator norm of
∇θF

γ
ξ pθq adheres to the following property with respect to θ and γ:

E

«

sup
pθ,γ,uq‰pθ1,γ1,u1qPDˆΓˆB

∣∣∣∣∣∣∇θF
γ
ξi

pθqu
∣∣∣p ´

∣∣∣∇θF
γ1

ξi
pθ1qu1

∣∣∣p∣∣∣
p|θ ´ θ1| ` |γ ´ γ1| ` |u ´ u1|qp

ff

ď Kp

Bounding higher-order derivatives of the stochastic update map is not a universal assumption, but is a reasonable
strengthening of smoothness. In the SGD chain, its contraction dynamics are characterized by its the first derivative
of the iterate function. In order to control this derivative, we must bound second order derivative behavior of the
function, giving rise Assumption 3.2. Although quite strong, this condition is satisfied by many smooth models of
practical interest (e.g. generalized linear models), and rules out only highly irregular loss landscapes.
Assumption 3.3 (2p-moment bound). Fix p ě 1. Assume

A :“ E

«

sup
θPD,γPΓ

sup
u:|u|“1

∣∣∣∇θF
γ
ξi

pθqu
∣∣∣2pff ă 8.

Finite 2p-th moments of the stochastic gradients strengthen Assumption 2.1 and are standard when deriving concen-
tration inequalities for SGD. Higher-moment assumptions of this type are routinely employed in empirical process
theory (see, e.g., Chernozhukov et al. (2018)) to obtain exponential tail bounds, and they also appear in modern analy-
ses of statistical inference for SGD (Chen et al., 2020). In our setting, this condition ensures that deviation inequalities
for the empirical expansion parameter hold with high probability, which is essential for establishing nonasymptotic
confidence statements about the edge of stability. While stronger than bounded variance, this requirement remains
reasonable in practice for smooth models where gradients have sub-Gaussian or sub-exponential tails.
Assumption 3.4 (Differentiability). Fix p ě 1. We assume that B

BγL
ℓ
ppγq is defined for all γ P Γ, and that there exists

some Kp ą 0 such that supγPΓ

∣∣∣ B
BγL

ℓ
ppγq

∣∣∣ ď Kp.

Differentiability of Lγ
ℓ ppq with respect to γ ensures that the stability threshold behaves regularly in a neighborhood

of the edge. This smoothness enables a first-order expansion around γℓppq, which is the key step in transferring
concentration of pL

γ

ℓ,nppq into consistency of pγℓ,nppq.

3.1 ASYMPTOTICS OF MEP-ℓ

In this section, we control the estimation error of L̂n
p pγq uniformly over γ P Γ, setting the stage of eventual estimation

of the edge-of-stability upon its definition. To that end, we recognize that L̂n
p pγq “ supθPD

1
n

řn
i“1

∣∣∣∇θF
γ
ξi

pθq

∣∣∣p
as the L8 norm of mean of random functions. Subsequently, adapting the tools of Chernozhukov et al. (2018), we
provide a general result controlling the partial sums of i.i.d. random functions.
Theorem 3.1. Let Φ Ă Rd be a compact convex set and X1pφq, . . . , Xnpφq be i. i.d. random functions with Xi :
Rd ÞÑ Rm for some d,m ě 1. For p ě 1, denote

KΦ :“ E
„

sup
φ‰φ1PΦ

|Xipφq ´ Xipφ
1q|p

|φ ´ φ1|p
ȷ

ă 8, and (6)

AΦ,p :“ E
„

sup
φPΦ

|Xipφq|2p
ȷ

ă 8. (7)
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Let the n-th partial sum be defined as Sn,ppφq :“
řn

i“1 |Xipφq|p. Then it holds that:

E
„

sup
φPΦ

|Sn,ppφq ´ E rSn,ppφqs|
ȷ

“ O
`?

nlog n
˘

,

where Op¨q hides constants solely related to p, d,m,Φ and µ.

Theorem 3.1, to the best of our knowledge, is the first such result controlling the moments of sums of random function.
As such, it may be of independent interest. Importantly, due to the compactness of Φ, the mean discrepancy between
the L8 norm of empirical and oracle average, decays at the near-parametric rate Op

a

plog nq{nq.

This general result serves as the workhorse for bounding the estimation error of L̂n
p pγq. As an application of Theorem

3.1, we recover the following guarantee on L̂n
p pγq, and more generally L̂ℓ,n

p pγq.

Theorem 3.2. Fix ℓ P N`, and recall Lℓ
ppγq and pLℓ,n

p pγq from Definition 2.1 and (5) respectively. Then, under
Assumptions 3.1-3.3, it holds that:

E
„

sup
γPΓ

∣∣∣pLℓ,n
p pγq ´ Lℓ

ppγq

∣∣∣ȷ “ O

ˆ

log n
?
n

˙

.

Establishing such guarantees is essential: without quantitative control of the estimation error, any attempt to approxi-
mate the edge of stability would remain heuristic. Theorem 3.2 provides precisely this control, paving the way for our
eventual goal: precisely estimating edge-of-stability.

4 EDGE OF STABILITY: DEFINITION AND ESTIMATION

In this section, we endeavor to precisely characterize the edge of stability through the explosions of MEP-ℓ. Subse-
quently, we propose a corresponding version of data-driven edge-of-stability, and provide finite sample error bounds.
Definition 4.1 (EOS-ℓ). Fix ℓ P N`. The oracle edge-of-stability of lag ℓ (EOS-ℓ) is defined as

γℓ ppq :“ inf
␣

γ ą 0 | Lℓ
ppγq ě 1

(

.

Clearly, Lℓ
pp0q “ 1. By recalling Assumption 3.1, γℓppq can be interpreted as smallest γ ą 0 such that the geometric

moment contraction no longer holds for the SGD dynamics. As with Lℓ
ppγq, we ignore the subscript ℓ whenever ℓ “ 1.

Remark 4.1. It is not yet evident why γℓppq even exists. To ensure its existence, we proceed via the following argument.

1. Recall Theorem 2.2 in Li et al. (2025); under Assumptions 2.1-2.2, there exists a function κ : R` ÞÑ R`,
such that for 0 ă γ ă κppq, we have Lppγq ă 1. Here we remark that Li et al. (2025) dealt with the p ą 1
case; which however can imply the case with p “ 1 by Hölder’s inequality as shown in Wu & Shao (2004).

2. Since gp¨, ξq P C2, by the Lebesgue Dominate Convergence Theorem (DCT), limγÑ8 Lppγq{γp “

supθ supuPRd:|u|“1 Er|∇2
θgpθ, ξqu|ps.

Conditions 1 and 2 above ensure that γℓppq P Γ exists.

Definition of the empirical version of γℓppq, denoted by γ̂ℓ,nppq, is not straight-forward, since the guarantees in Li
et al. (2025) extend only to Lℓ

ppγq, and not to its empirical version. However, Theorem 3.2 ensures that for all γ P Γ

for any compact set Γ, Lℓ
ppγq is closely approximated by its empirical version L̂ℓ,n

p pγq. Therefore, it is conceivable
to leverage Theorem 3.2 to obtain a precisely-defined compact convex set Γ, such that, with high probability, L̂ℓ,n

p pγq

crosses 1 on intpΓq. More formally, by Theorem 2.2 in Li et al. (2025) and continuity of Lℓ
pp¨q ă 1, there exists some

δ ą 0 and γ0 ą 0 such that Lℓ
ppγq ă 1 for all γ P Bδpγ0q. On the other hand, let γ:

ℓ ppq :“ inf
␣

γ ą 0 | Lℓ
ppγq ą 2

(

.

Similar to Remark 4.1, γ:

ℓ ppq is well-defined. Then we proceed to define the edge-of-stability at lag ℓ.
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Definition 4.2. Denote Γ :“ rγ0, γ
:

ℓ ppqs. The oracle EOS-ℓ is defined as

pγℓ,nppq :“ min
!

γ P Γ | pLℓ,n
p pγq ě 1

)

.

Note that, by definition of Γ, it also follows that γℓppq P intpΓq. We establish the following conventions for the
edge-cases: if supγPΓ L̂

ℓ,n
p pγq ă 1, then γ̂ℓ,nppq “ 0; on the other hand, if infγą0 L̂

ℓ,n
p pγq “ 1, then γ̂ℓ,nppq “ 8.

In fact, in the following we prove that these edge cases have vanishing probability, and consequently, we recover the
asymptotic consistency of γℓ,nppq as an estimator of γℓppq.
Theorem 4.3. Fix ℓ P N`, and recall γℓppq and pγℓ,nppq from Definitions 4.1 and 4.2 respectively. Then, under
Assumptions 3.1-3.3,

Pppγℓ,nppq P intpΓqq Ñ 1 as n Ñ 8.

Additionally, it holds that:

|pγℓ,nppq ´ γℓppq| “ OP

ˆ

log n
?
n

˙

.

To the best of our knowledge, Theorem 4.3 provides the only, provably consistent estimator of EOS-ℓ in the context
of SGD. Beyond theoretical interest, the practical relevance of estimator cannot be overstated; pγℓ,nppq indicates a
data-driven threshold of the learning rate, beyond which the SGD dynamics explode with high probability.

5 SIMULATION

In this section, we empirically characterize the edge-of-stability region, and assess its optimality. Across a suite of
synthetic settings (linear and expectile regression with varying dimension, lag, and data distributions), we estimate
the contraction ratio Lppγq1{p as a function of γ and identify the smallest γ at which contraction fails. The resulting
empirical boundary closely matches our theoretical prediction, demonstrating that the proposed “edge of stability” is
tight. Taken together, these results validate the theory and provide actionable guidance for selecting constant step sizes
that guarantee convergence in practice.

We first demonstrate our result focusing on the following data generating mechanism:

Yi “ XJ
i θ

˚ ` ϵi,

and let ξi “ tXi, yiuiPN`
denote the observed sequential data and θ˚ is the unknown population parameter of interest.

We study two convex models: (i) linear regression with squared loss

G1pθq “ Eξi“pXi,yiq„Π2
pXJ

i θ ´ yiq
2{2,

where F γ
ξi

pθq takes the following form:

F γ
ξi

pθq “ θ ´ γXipX
J
i θ ´ yiq,

and (ii) expectile regression with the asymmetric least-square loss

G2pθq “ Eξi“pXi,yiq„Π2

ˇ

ˇw ´ 1tXJ
i θ´yią0u

ˇ

ˇpXJ
i θ ´ yiq

2{2, with weight w P p0, 1q,

and corresponding F γ
ξi

pθq is given by

F γ
ξi

pθq “ θ ´
ˇ

ˇw ´ 1tXJ
i θ´yią0u

ˇ

ˇXipX
J
i θ ´ yiq.

The feature vector X P Rd is drawn either from a Gaussian design N p0, Idq or a product Uniform design Unifpr0, 1sdq

and the noise ξ is drawn from standard Gaussian distribution, independent of tXiuiPN. We vary the ambient dimension
d P t1, 2, 3, 5, 10u, the composition lag l P t1, 5, 10u, and the moment index p P t2, 4u. For linear regression we
sweep γ on a grid Γnorm “ t0.01, 0.02, . . . , 1.00u under the Gaussian design, and for the Uniform design we use
Γunif “ t0.01, 0.02, . . . , 4.00u to account for the different curvature scales observed in practice.

Across all configurations, the mapping γ ÞÑ Lppγq1{p exhibits a pronounced elbow shape, where the estimated ratio
initially declines from 1, reaches a minimum, and then reverses, crossing 1 at the stability edge; beyond the crossing
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it grows rapidly, ultimately diverging. The transition occurs well within the plotted range, so the edge γ̂ is visually
stable and can be localized to a narrow interval.

In Figure 2 and Figure 4 (in the Appendix §B), subplots(a) demonstrate, that increasing the moment index p P

t1, 2, 3, 5, 10u shifts the crossing leftward while keeping the minimum shallow. This indicates that heavier emphasis
on tail deviations tightens the admissible step-size, which aligns with the result proposed in Li et al. (2025). Varying
the lag ℓ in subplots(b) of Figure 2 and Figure 4 primarily enlarge the edge of stability as lag ℓ increases: for any fixed
γ, sub-multiplicative gives Lℓ

ppγq ď Lppγqp, so increasing ℓ pushes ratios further below on the stable side and further
above 1 on the unstable side. Thus the increase of ℓ allows larger γ to ensure the contraction. The dimensional study
in subplots(c) of Figure 2 and Figure 4 shows the early contraction of the stable region as d increases. In addition,
the empirical edge γ̂ℓ,nppq extracted at the yellow curve in subplots(a) and red curve in subplots(b) closely matches
the theoretical boundary proposed in Remark 2.2 for d “ 1 and ℓ “ 1 case, where γ̂ℓ,nppq “ 2

3 for Xi „ N p0, 1q

and γ̂ℓ,nppq “ 10
3 for Xi „ Unifr0, 1s. As a conclusion, the results displayed in Figure 2 and Figure 4 validate

that the stability set γ : Lppγq ă 1 is a single interval starting at 0, its boundary is accurately captured by the unique
intersection with level 1, and its dependence on p, ℓ, and d follows the theoretical predictions.

Figure 3 shows that expectile regression mirrors the linear case: the edge of stability (the unique crossing of Lppγq1{p

with level 1) decreases as the moment index p increases and increases as the lag ℓ grows. The first trend follows the
p-sensitivity of the contraction metric via Hölder’s inequality. The second follows from the sub-multiplicativity of
the maximal expansion parameter (MEP), Lp,ℓ`kpγq ď Lp,ℓpγqLp,kpγq, which strengthens contraction on the stable
side and steepens growth on the unstable side with right shifting the crossing in γ. The same qualitative dependencies
appear for expectile regression for dimension d: the edge moves left as d grows (a smaller stable γ). Taken together,
these curves confirm that the qualitative and quantitative dependence of the stability edge on p, ℓ and d persists beyond
squared loss.

6 CONCLUSIONS AND DISCUSSION

In this work, we provided a principled characterization of the stability region of SGD with constant learning rates. By
introducing the notion of the maximal expansion parameter and connecting it to Lyapunov exponents, we established a
rigorous definition of the edge-of-stability and developed a consistent, data-driven estimator for identifying admissible
learning rates. Our theoretical results, complemented by extensive simulations on linear and expectile regression,
confirm that the proposed framework accurately captures the transition from stable to unstable regimes. These findings
supply both a theoretical foundation and a practical tool for selecting constant step sizes in online learning algorithms.

Looking ahead, the observed dependence of stability thresholds on factors such as dimension, lag, and moment index
underscores the importance of adaptive, data-driven tuning strategies, rather than relying on fixed heuristics. Moreover,
by situating SGD stability with the Lyapunov exponent in dynamic systems, our work lays the groundwork for unifying
deterministic and stochastic stability analyses, potentially leading to sharper guidelines for learning rate selection
across a broad range of optimization problems.

(a) d “ 1, ℓ “ 1, p P t1, 2, 3, 5, 10u (b) d “ 1, ℓ P t1, 2, 3, 5, 10u, p “ 2 (c) d “ t1, 3, 5, 10u, ℓ “ 10, p “ 2

Figure 2: Linear regression with Xi „ N p0, Idq. Each panel plots pLℓ
ppγq1{p versus the constant step size γ for linear

regression. Experimental factors and grids follow the setup marked in subplot labels.
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(a) d “ 1, ℓ “ 1, p P t1, 2, 3, 5, 10u (b) d “ 1, ℓ P t1, 2, 3, 5, 10u, p “ 2 (c) d “ t1, 3, 5, 10u, ℓ “ 1, p “ 2

Figure 3: Expectile regression with Xi „ N tp0, 1qu and weight ω “ 0.2. Each panel plots pLℓ
ppγq1{p versus the

constant step size γ for expectile regression and is averaged over 30 experiments. Experimental factors and grids
follow the setup marked in subplot labels.
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Appendix

This appendix is devoted to additional discussion, collection of mathematical arguments and additional simulation
results. In particular, in §A we discuss some other approaches to edge-of-stability analysis, as well as the existing gaps
in the literature. In §C-§E, we provide detailed proofs to our theoretical results.

A RELATED LITERATURE

The edge of stability phenomenon was first systematically identified by Cohen et al. (2021) in the context of neural
networks, showing empirically that GD trajectories typically operate at the stability threshold. Subsequent work such
as Ahn et al. (2023) extended these insights to simple neuron models, establishing that edge of stability behavior arises
even in minimal architectures. These contributions built on a long line of optimization analyses (Bottou et al., 2018a;
Bach & Moulines, 2013) that emphasized the importance of step-size selection and convergence guarantees.

Several papers seek to isolate the mechanisms behind the edge of stability using simplified or tractable models. Arora
et al. (2022) developed a theoretical framework for GD at the edge of stability, while Zhu et al. (2022) and Liu
et al. (2025) employed minimalist examples to clarify the core dynamics. Variants such as diagonal linear networks
(Even et al., 2023) and two-step updates (Chen & Bruna, 2023) further illuminate how the phenomenon arises across
different formulations. Parallel lines of work have also explored how normalization or regularization mechanisms
affect optimization stability, e.g. Li et al. (2023) on batch normalization and Barrett & Dherin (2021) on implicit
gradient regularization.

Another strand of work interprets the edge of stability through the geometry of the loss landscape. Progressive sharpen-
ing along training trajectories was analyzed by Wang et al. (2022), while Song & Yun (2023) provided a bifurcation-
theoretic view. More recent work has refined these ideas via high-dimensional analysis (Agarwala & Pennington,
2025), sharpness-aware methods (Long & Bartlett, 2024), and curvature-aware learning-rate tuning (Roulet et al.,
2024). These developments resonate with broader optimization perspectives on adaptive learning rates (Yang et al.,
2023) and comparisons of adaptive methods with SGD (Zhang et al., 2020).

Beyond stability, the edge of stability has been connected to implicit bias and generalization. For instance, Wu et al.
(2023) and Damian et al. (2023) study logistic regression at the edge of stability, highlighting the implicit regularization
induced by GD. Related work considers minimax optimal convergence (Zhang et al., 2025) and generalization in
decentralized SGD settings (Zeng & Lei, 2025). This complements a broader literature on benign overfitting and
generalization in over-parameterized models (Bartlett et al., 2020; Zhang et al., 2022; Zou et al., 2021; Liu et al.,
2022), where stability considerations play a central role.

While the majority of results concern deterministic GD, several papers have begun exploring extensions. Andreyev
& Beneventano (2025) revisited the notion of stability under stochastic gradient descent, whereas Cohen et al. (2024)
and Dereich et al. (2025) examined adaptive and Adam-type methods, respectively. Other directions extend edge of
stability analysis to deep linear networks (Ghosh et al., 2025) and multi-fractal loss landscapes (Ly & Gong, 2025).
These developments connect naturally to classical work on stochastic approximation (Wu et al., 2018; Jain et al., 2018)
and continue the trend of relating stochastic dynamics to stability properties.

Despite this growing body of work, the focus has remained predominantly on GD. By contrast, our work develops a
systematic analysis of edge of stability in the context of stochastic gradient descent, providing a sharper understanding
of how stochasticity modifies, stabilizes, or destabilizes the classical GD picture. In this way, we broaden the scope of
the edge of stability framework to settings of practical relevance.

B ADDITIONAL SIMULATION RESULTS

In addition to the plot we have in the main context, we report here the simulation results for the linear regression with
uniformly distributed random samples. The discussion can be referred to in the main text Section 5.
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(a) d “ 1, ℓ “ 1, p P t1, 2, 3, 5, 10u (b) d “ 1, ℓ P t1, 2, 3, 5, 10u, p “ 2 (c) d “ t1, 3, 5, 10u, ℓ “ 10, p “ 2

Figure 4: Linear regression with Xi „ Uniftr0, 1sdu. Each panel plots pLℓ
ppγq1{p versus the constant step size γ for

linear regression. Experimental factors and grids follow the setup marked in subplot labels.

C PROOFS OF §2

C.1 PROOF OF LEMMA 2.2

Proof. W.l.o.g., we consider the case ℓ “ 1; the case for general ℓ P N is similar. Note that since F γ
ξ p¨q P C1, it

follows that

sup
θPD

sup
u:|u|“1

1

n

n
ÿ

i“1

ˇ

ˇ∇θF
γ
ξi

pθqu
ˇ

ˇ

p
ď sup

θPD

1

n

n
ÿ

i“1

lim sup
θ1Ñθ

ˇ

ˇF γ
ξi

pθq ´ F γ
ξi

`

θ1
˘
ˇ

ˇ

p

ˇ

ˇθ ´ θ1
ˇ

ˇ

p ď sup
θ‰θ1PD

1

n

n
ÿ

i“1

ˇ

ˇF γ
ξi

pθq ´ F γ
ξi

`

θ1
˘
ˇ

ˇ

p

ˇ

ˇθ ´ θ1
ˇ

ˇ

p .(8)

On the other hand, by Jensen’s inequality and the convexity of D,

sup
θ‰θ1PD

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ
F γ
ξi

pθq ´ F γ
ξi

pθ1q

ˇ

ˇ

ˇ

p

|θ ´ θ1|
p “ sup

θ‰θ1PD

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ş1

0
B
BtF

γ
ξi

pθ1 ` tpθ ´ θ1qqdt
ˇ

ˇ

ˇ

p

|θ ´ θ1|
p

ď sup
θ‰θ1PD

1

n

n
ÿ

i“1

ş1

0

ˇ

ˇ

ˇ

B
BtF

γ
ξi

pθ1 ` tpθ ´ θ1qq

ˇ

ˇ

ˇ

p

dt

|θ ´ θ1|
p

“ sup
θ‰θ1PD

1

n

n
ÿ

i“1

ş1

0

ˇ

ˇ

ˇ
∇θF

γ
ξi

pθ1 ` tpθ ´ θ1qq pθ ´ θ1q

ˇ

ˇ

ˇ

p

dt

|θ ´ θ1|
p

ď sup
θ‰θ1PD,tPr0,1s

sup
u:|u|“1

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ
∇θF

γ
ξi

pθ1 ` tpθ ´ θ1qqu
ˇ

ˇ

ˇ

p

ď sup
θPD

sup
u:|u|“1

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ
∇θF

γ
ξi

pθqu
ˇ

ˇ

ˇ

p

. (9)

Equations (8) and (9) jointly conclude the proof of (3). In lieu of supθ‰θ1PD E
“

ˇ

ˇFγ
ξi

pθq´Fγ
ξi

`

θ1
˘
ˇ

ˇ

p

ˇ

ˇθ´θ1

ˇ

ˇ

p

‰

ă 8 from Assump-

tion 3.1, Dominated Convergence Theorem entails (2.2).

C.2 PROOF OF PROPOSITION 1

Proof. We denote Hℓpθq :“ Fi`ℓ´1:ipθq and Fℓ´1 :“ σpξi, . . . , ξi`ℓ´1q. Then:
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Lℓ`k
p pγq “ sup

θ‰θ1PD

E
“

|Fi`ℓ`k´1:ipθq ´ Fi`ℓ`k´1:ipθ
1q|p

‰

|θ ´ θ1|p
“ sup

θ‰θ1PD
E
„

|Fi`ℓ`k´1:ipθq ´ Fi`ℓ`k´1:ipθ
1q|p

|θ ´ θ1|p
ȷ

“ sup
θ‰θ1PD

E
„

|Fi`ℓ`k´1:i`ℓpHℓpθqq ´ Fi`ℓ`k´1:i`ℓpHℓpθ
1qq|p

|Hℓpθq ´ Hℓpθ1q|p
¨
|Hℓpθq ´ Hℓpθ

1q|p

|θ ´ θ1|p
ȷ

“ sup
θ‰θ1PD

E
„

E
„

|Fi`ℓ`k´1:i`ℓpHℓpθqq ´ Fi`ℓ`k´1:i`ℓpHℓpθ
1qq|p

|Hℓpθq ´ Hℓpθ1q|p
¨
|Hℓpθq ´ Hℓpθ

1q|p

|θ ´ θ1|p
| Fℓ´1

ȷȷ

“ sup
θ‰θ1PD

E
„

E
„

|Fi`ℓ`k´1:i`ℓpHℓpθqq ´ Fi`ℓ`k´1:i`ℓpHℓpθ
1qq|p

|Hℓpθq ´ Hℓpθ1q|p
| Fℓ´1

ȷ

¨
|Hℓpθq ´ Hℓpθ

1q|p

|θ ´ θ1|p
ȷ

.

Conditionally on Fℓ´1, Fi`ℓ`k´1:i`ℓ is driven by k new i. i.d. innovations which are independent of Fℓ´1. Therefore
we deduce that:

E
„

|Fi`ℓ`k´1:i`ℓpHℓpθqq ´ Fi`ℓ`k´1:i`ℓpHℓpθ
1qq|p

|Hℓpθq ´ Hℓpθ1q|p
| Fℓ´1

ȷ

ď Lk
ppγq.

Therefore:

Lℓ`k
p pγq ď sup

θ‰θ1PD
E
„

Lk
ppγq ¨

|Hℓpθq ´ Hℓpθ
1q|p

|θ ´ θ1|p
ȷ

“ Lk
ppγq ¨ sup

θ‰θ1PD

|Hℓpθq ´ Hℓpθ
1q|p

|θ ´ θ1|p
“ Lk

ppγq ¨ Lℓ
ppγq.

D PROOFS OF §3

Before we proceed to the key arguments behind the theoretical results of §3, it is instrumental to introduce a two key
result that serves as the backbone of our arguments. This result originate from Chernozhukov et al. (2018), and serves
as sharp probabilistic controls on the fluctuations of empirical sums indexed by high-dimensional parameter sets. We
restate it here in a form adapted to our setting.

Lemma D.1. Let X1, . . . , Xn P Rp be independent random vectors with p ě 2. Define M :“ max1ďiďn,1ďjďp |Xij |
and σ2 :“ max1ďjďp

řn
i“1 ErX2

ijs. Then:

E

«

max
1ďjďp

∣∣∣∣∣ n
ÿ

i“1

pXij ´ ErXijsq

∣∣∣∣∣
ff

ď Kpσ
a

log p `
a

ErM2s log pq,

where K ą 0 is a universal constant.

This lemma complements the previous one by providing an expectation bound for the same maximal deviation and
quantifies the typical size of the deviation, showing that it scales as O

`?
log p

˘

up to constants depending on variance
and maximal moments. In summary, it provides the empirical process tools that underpin our general moment bound
in Theorem 3.1. We note that the for the sake of brevity, the results are proved for ℓ “ 1; the general ℓ-cases follow by
a simple conditional argument akin to Proposition 1.

D.1 PROOF OF THEOREM 3.1

The key idea of Theorem 3.1 is to discretize the set Φ with suitably selected grid, before applying Lemma D.1 to
control the deviations of functions evaluated on those grid-points. This grid is carefully chosen to have appropriate
packing radius, that allows us to move seemlessly into the compact set Φ while maintaining the rate derived on the
grid-points. We formalize this ides through a novel technique leveraging ε-nets.
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Proof. Let N :“ nc for some c ą p{2. For a given φ P Φ, we denote tφuN :“ 1
N

`

tNφ1u, . . . , tNφdu
˘

, with
φk being the kth coordinate of φ. Then, by compactness and convexity of Φ, N :“ ttφuN | φ P Φu is a δn-net
for Φ, where δ :“ δn ď LΦn

´c for some constant LΦ ą 0 that depends only on Φ. Enumerate its elements as
tφ1, . . . , φJu and observe J ď LΦ ¨Nd. Recall AΦ,p defined in Theorem 3.1, and set Xij :“ |Xipφjq|p. Clearly, with
σ2 :“ max1ďjďJ

řn
i“1 E

“

X2
ij

‰

, we obtain, via (7),

σ2 ď nE
„

sup
φPΦ

|Xipφq|2p
ȷ

“ n ¨ AΦ,p. (10)

On the other hand, letting M2 :“ max1ďiďn,1ďjďJ |Xij |2, it follows

E
“

M2
‰

“ E
„

max
1ďiďn

sup
φPΦ

|Xipφq|2
ȷ

ď

n
ÿ

i“1

E
„

sup
φPΦ

|Xipφq|2
ȷ

“ n ¨ AΦ,p. (11)

In view of (10) and (11), Lemma D.1 entails

E

«

max
1ďjďJ

∣∣∣∣∣ n
ÿ

i“1

pXij ´ E rXijsq

∣∣∣∣∣
ff

ď K
´

σ
a

log J `
a

E rM2s log J
¯

“ K
´

a

n ¨ AΦ,p

a

logLΦ ` cd log n `
a

n ¨ AΦ,pplogLΦ ` cd log nq

¯

ď B ¨
?
n log n, (12)

where K ą 0 is a universal constant and B ą 0 depends only on AΦ,p, c and d. With this necessary derivations taken
care of, we proceed towards the main arguments. By definition, |φ ´ tφuN | ă δ. Recall Sn,pp¨q from the statement of
Theorem 3.1. Note that

E
“

sup
φPϕ

∣∣Sn,ppφq ´ E
“

Sn,ppφ
˘

s
∣∣ ‰

ď E
“

max
1ďjďJ

∣∣Sn,pptφuN q ´ E
“

Sn,pptφuN q
‰∣∣ ‰ ` E

“

sup
φPΦ

|Sn,ppφq ´ Sn,pptφuN q|
‰

` sup
ϕPΦ

∣∣E“Sn,ppφ
˘

s ´ E
“

Sn,pptφuN q
‰
∣∣

:“ T1 ` T2 ` T3. (13)

We tackle (13) one-by-one. Equation (12) instructs that T1 “ O p
?
n log nq. Next, moving on to T2, we observe that

E
„

sup
φPΦ

|Sn,ppφq ´ Sn,pptφuN q|
ȷ

ď n ¨ E
„

sup
φPΦ

|Xp
i pφq ´ Xp

i ptφuN q|
ȷ

ď np ¨ E
„

2 sup
φPΦ

|Xipφq|p´1
¨ sup
φPΦ

|Xipφq ´ XiptφuN q|
ȷ

(14)

ď 2np

ˆ

E
„

sup
φPΦ

|Xipφq|p
ȷ˙

p´1
p

ˆ

E
„

sup
φPΦ

|Xipφq ´ XiptφuN q|p
ȷ˙

1
p

(15)

ď 2np
a

AΦ,p

p´1
p

pKΦδq
1
p “ Opn ¨ δ´c{pq “ Opn1´c{pq, (16)

where, (14) follows due to the elementary inequality | |a|p ´ |b|p | ď p
´

|a|p´1
` |b|p´1

¯

¨ |a ´ b|, for p ě 1, a, b P R;
(15) involves an application of Hölder’s inequality, and finally, (16) invokes (6) and (7). Note that, trivially T3 ď T2.
Therefore, (13), along with δ “ Opn´cq with c ą p{2, begets,

E
„

sup
φPΦ

|Sn,ppφq ´ E rSn,ppφqs|
ȷ

À ¨
?
n log n ` n1´c{p “ O

`?
n log n

˘

,

where À hides constants pertaining p, d and φ. This completes the proof.

D.2 PROOF OF THEOREM 3.2

The key idea behind Theorem 3.2 is to express the data-driven MEP’s as supremum of random functions, before
invoking Theorem 3.1.
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Proof. For θ P D, γ P Γ and u P B, denote

Mnpθ, γ, uq :“
1

n

n
ÿ

i“1

∣∣∣∇θF
γ
ξi

pθqu
∣∣∣p , and, Mpθ, γ, uq :“ E

”
∣∣∣∇θF

γ
ξi

pθqu
∣∣∣pı .

We start off by establishing

E

«

sup
θPD,γPΓ,uPB

|Mn pθ, γ, uq ´ M pθ, γ, uq|

ff

“ O

ˆ

log n
?
n

˙

. (17)

Observe that Φ :“ D ˆ Γ ˆ B is a compact set, and F γ
ξi

pθq are i. i.d. random functions taking values in φ P Φ. More-
over, Assumptions 3.2 and 3.3 correspond to (6) and (7) respectively. Therefore, a direct application of Theorem 3.1
entails (17). Finally, in lieu of Lemma 2.2, (17) yields

E
„

sup
γPΓ

∣∣∣pLℓ,n
p pγq ´ Lℓ

ppγq

∣∣∣ȷ “ E

«

sup
γPΓ

∣∣∣∣∣supθPD
sup

u:|u|“1

1

n

n
ÿ

i“1

∣∣∣∇θF
γ
ξi

pθqu
∣∣∣p ´ sup

θPD
sup

u:|u|“1

E
”

∇θF
γ
ξi

pθqu
ı

∣∣∣∣∣
ff

ď
1

n
E

«

sup
θPD,γPΓ,uPB

∣∣∣∣∣ n
ÿ

i“1

´
∣∣∣∇θF

γ
ξi

pθqu
∣∣∣p ´ E

”
∣∣∣∇θF

γ
ξi

pθqu
∣∣∣pı¯∣∣∣∣∣

ff

“ O

ˆ

log n
?
n

˙

,

which completes the proof.

E PROOF OF THEOREM 4.3

Proof. We provide the proof for ℓ “ 1. By definition, pγnppq P Γ. Fix some M ą 0 such that Lppγ0q ` M ă 1.
Therefore, invoking Theorem 3.2, it follows,

P
´

pLn
p pγ0q ă 1

¯

ě P
´

|pLn
p pγ0q ´ Lppγ0q| ă M

¯

Ñ 1 as n Ñ 8. (18)

Additionally, suppose 0 ă M 1 ă 1. By the continuity of Lpp¨q, Lppγ`ppqq “ 2, hence, yet another application of
Theorem 3.2 entails that

P
´

pLn
p pγ:ppqq ą 1

¯

ě P
´

|pLn
p pγ:ppqq ´ 2| ă M 1

¯

Ñ 1 as n Ñ 8. (19)

In view of continuity of L̂n
p p¨q, equations (18) and (19) combined, yield that

Pppγnppq P intpΓqq ě P
´

pLn
p pγ0q ă 1, pLn

p pγ:ppqq ą 1
¯

Ñ 1 as n Ñ 8. (20)

This completes the proof of our first assertion. We leverage (20) en route to our second assertion. To that end, observe
that following from Assumption 3.4, Lpp¨q is differentiable at γppq with its derivative bounded by Kp. So there exists
some K ď Kp, such that we can use it to write out first order Taylor expansion of Lp¨q about γppq:

Lpγq ´ Lpγppqq “ Kpγ ´ γppqq ` opγ ´ γppqq. (21)
From Theorem 3.2, it follows given ε ą 0 that there exist some Gε ą 0 and Nε ą 0 such that for all n ą Nε:

P
ˆ

sup
γPΓ

|Lnpγq ´ Lpγq| ą Gε
log n
?
n

˙

ď ε.

If pγℓ,n P Γ, then following from the continuity of Ln, we have Lnppγℓ,nq “ 1 “ Lpγℓq. Therefore,

P
ˆ

sup
γPΓ

|Lnpγq ´ Lpγq| ą Gε
log n
?
n

˙

ě P
ˆ

pγℓ,n P Γ, |Lnppγℓ,nq ´ Lppγℓ,nq| ą Gε
log n
?
n

˙

ě P
ˆ

pγℓ,n P Γ, |pγℓ,n ´ γℓ| ą K1 ¨
log n
?
n

˙

, (22)

where, in (22), we invoke (21). Combined with (21), (22) yields

P
ˆ

pγℓ,n P Γ, |pγℓ,n ´ γℓ| ą
Gε

K1
¨
log n
?
n

˙

ď ε, (23)

where, K1 :“ Gε

K . Equations (20), (23) jointly concludes the proof.
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